Logo Aeris
Copyright 2017 CNES-CNRS
GEISA : spectroscopic database



    HOME

     What's new ?

    Graphical tool

GEISA 2015 (new)

    GEISA 2011

    GEISA 2003




 

References for the GEISA 2015 sub-database on line transition parameters

Details of changes since the 2011 edition of GEISA



GEISA 2015 molecule numbering
  1. h2o
  2. co2
  3. o3
  4. n2o
  5. co
  6. ch4
  7. o2
  8. no
  9. so2
  10. no2
  1. nh3
  2. ph3
  3. hno3
  4. oh
  5. hf
  6. hcl
  7. hbr
  8. hi
  9. clo
  10. ocs
  1. h2co
  2. c2h6
  3. ch3d
  4. c2h2
  5. c2h4
  6. geh4
  7. hcn
  8. c3h8
  9. c2n2
  10. c4h2
  1. hc3n
  2. hocl
  3. n2
  4. ch3cl
  5. h2o2
  6. h2s
  7. hcooh
  8. cof2
  9. sf6
  10. c3h4
  1. ho2
  2. clono2
  3. ch3br
  4. ch3oh
  5. no+
  6. hnc
  7. c6h6
  8. c2hd
  9. cf4
  10. ch3cn
  11. hdo
  12. so3


Back to top H2O
[24] O.V. Naumenko. Institute of Atmospheric Optics. Private communication. (2015).
[25] L.H. Coudert, M.-A. Martin-Drumell, O. Pirali, Analysis of the high-resolution water spectrum up to the Second Triad and to J=30, J. Mol. Spectrosc. 303 (2014) 36-41.
[26] L.H. Coudert, G. Wagner, M. Birk M, Yu.I. Baranov, W.J. Lafferty, J.-M. Flaud, The H216O molecule: line position and line intensity analyses up to the second triad, J. Mol. Spectrosc. 251 (2008) 339-357.
[27] S. Mikhailenko, D. Mondelain, S. Kassi, A. Campargue, An accurate and complete empirical line list for water vapor between 5850 and 7920 cm-1, J. Quant. Spectrosc. Radiat. Trans. 140 (2014) 48-57.
[28] P. Macko, D. Romanini, S.N. Mikhailenko, O.V. Naumenko, S. Kassi, A. Jenouvrier, Vl.G. Tyuterev, A. Campargue, High sensitivity CW-cavity ring down spectroscopy of water in the region of the 1.5 ï?­m atmospheric window, J. Mol. Spectrosc. 227 (2004) 90-108.
[29] S.N. Mikhailenko, L. Wang, S. Kassi, A. Campargue, Weak water absorption lines around 1.455 and 1.66 μm by CW-CRDS, J. Mol. Spectrosc. 244 (2007) 170-178.
[30] S. Mikhailenko, S. Kassi, L. Wang, A. Campargue, The absorption spectrum of water in the 1.25 µm transparency window (7408 – 7920 cm-1), J. Mol. Spectrosc. 269 (2011) 92-103.
[31] O. Leshchishina, S. Mikhailenko, D. Mondelain, S. Kassi, A. Campargue, CRDS of water vapor at 0.1 Torr between 6886 and 7406 cm-1, J. Quant. Spectrosc. Radiat. Trans. 113 (2012) 2155-2166.
[32] O. Leshchishina, S. Mikhailenko, D. Mondelain, S. Kassi, A. Campargue, An improved line list for water vapor in the 1.5 µm transparency window by highly sensitive CRDS between 5852 and 6607 cm-1, J. Quant. Spectrosc. Radiat. Trans. 130 (2013) 69-80.
[33] R.A. Toth, Measurements of positions, strengths and self-broadened widths of H2O from 2900 to 8000 cm-1: Line strength analysis of the 2nd triad bands, J. Quant. Spectrosc. Radiat. Trans. 94 (2005) 51-107.
[34] http://spectra.iao.ru
[35] D.W. Schwenke, H. Partridge, Convergence testing of the analytic representation of an ab initio dipole moment function for water: Improved fitting yields improved intensities, J. Chem. Phys. 113 (2000) 6592-6597.
[36] L. Régalia, C. Oudot, S. Mikhailenko, L. Wang, X. Thomas, A. Jenouvrier, P. Von der Heyden, Water vapor line parameters from 6450 to 9400 cm-1, J. Quant. Spectrosc. Radiat. Trans. 136 (2014) 119-136.
[37] R. Tolchenov, J. Tennyson, Water line parameters from reï¬?tted spectra constrained by empirical upper state levels: Study of the 9500–14500 cm-1 region, J. Quant. Spectrosc. Radiat. Trans. 109 (2008) 559-568.
[38] J. Tennyson, P.F. Bernath, L.R. Brown, A. Campargue, A.G. Császár, L. Daumont, R.R. Gamache, J.T. Hodges, O.V. Naumenko, O.L. Polyansky, L.S. Rothman, A.C. Vandaele, N.F. Zobov, A.R. Al Derzi, C. Fábri, A.Z. Fazliev, T. Furtenbacher, I.E. Gordon, L. Lodi, I.I. Mizus, IUPAC critical evaluation of the rotational–vibrational spectra of water vapor. Part III: Energy levels and transition wavenumbers for H216O, J. Quant. Spectrosc. Radiat. Trans. 117 (2013) 29-58.
[39] R.J. Barber, J. Tennyson, G.J. Harris, R.N. Tolchenov, A high - accuracy computed water line list, Mon. Not. R. Astron. Soc. 368 (2006) 1087-1094.
[40] R.A. Toth, Line list of water vapor parameters from 500 to 8000 cm-1, http://mark4sun.jpl.nasa.gov/h2o.html
[41] R.N. Tolchenov, O. Naumenko, N.F. Zobov, S.V. Shirin, O. L. Polyansky, J. Tennyson, M. Carleer, P.-F. Coheur, S. Fally, A. Jenouyrier, A.C. Vandaele, Water vapour line assignments in the 9250 – 26 000 cm-1 frequency range, J. Mol. Spectrosc. 233 (2005) 68-76.
[42] L. Lodi, J. Tennyson, Line lists for H218O and H217O based on empirical line positions and ab initio intensities, J. Quant. Spectrosc. Radiat. Trans. 113 (2012) 850-858.
[43] J. Tennyson, P.F. Bernath, L.R. Brown, A. Campargue, A.G. Császár, L. Daumont, R.R. Gamache, J.T. Hodges, O.V. Naumenko, O.L. Polyansky, L.S. Rothman, A.C. Vandaele, N.F. Zobov, A database of water transitions from experiment and theory (IUPAC Technical Report), Pure Appl. Chem. 86 (2014) 71-83.
[44] T. Furtenbacher, A.G. Csaszar and J. Tennyson, MARVEL: measured active rotational-vibrational energy levels, J. Molec. Spectrosc. 245 (2007) 115-125.
[45] T. Furtenbacher, A.G. Császár, MARVEL: Measured active rotational-vibrational energy levels. II. Algorithmic improvements, J. Quant. Spectrosc. Radiat. Trans. 113 (2012) 929-935.
[46] J. Tennyson, P.F. Bernath, L.R. Brown, A. Campargue, M.R. Carleer, A.G. Császár, R.R. Gamache, J.T. Hodges, A. Jenouvrier, O.V. Naumenko, O.L. Polyansky, L.S. Rothman, R.A. Toth, A.C. Vandaele, N.F. Zobov, L. Daumont, A.Z. Fazliev, T. Furtenbacher, I.E. Gordon, S.N. Mikhailenko, S.V. Shirin, IUPAC critical evaluation of the rotational-vibrational spectra of water vapor. Part I. Energy levels and transition wavenumbers for H217O and H218O, J. Quant. Spectrosc. Radiat. Trans. 110 (2009) 573-596.
[47] L. Lodi, J. Tennyson, O.L. Polyansky, A global, high accuracy ab initio dipole moment surface for the electronic ground state of the water molecule, J. Chem. Phys. 135 (2011) 034113.
[48] S.V. Shirin, N.F. Zobov, R.I. Ovsyannikov, O.L. Polyansky, J. Tennyson, Water line lists close to experimental accuracy using a spectroscopically determined potential energy surface for H216O, H217O and H217O, J. Chem. Phys. 128 (2008) 224306.
[49] O.L. Polyansky, A.A. Kyuberis, L. Lodi, J. Tennyson, R.I. Ovsyanniko, N.F. Zobov, ExoMol molecular line lists. VII: high accuracy computed line lists for H218O and H217O, Mon. Not. Roy. Astron. Soc. (submitted).
[50] R.A. Scheepmaker, C. Frankenberg, A. Galli, A. Butz, H. Schrijver, N.M. Deutscher, D. Wunch, T. Warneke, S. Fally, I. Aben, Improved water vapour spectroscopy in the 4174–4300 cm−1 region and its impact on SCIAMACHY HDO/H2O measurements, Atmos. Meas. Tech. 6 (2013) 879-894. doi:10.5194/amt-6-879-2013.
[51] A. Jenouvrier, L. Daumont, L. Régalia-Jarlot, Vl.G. Tyuterev, M. Carleer, A.C. Vandaele, S. Mikhailenko, S. Fally, Fourier transform measurements of water vapor line parameters in the 4200 – 6600 cm−1 region, J. Quant. Spectrosc. Radiat. Trans. 105 (2007) 326-355. doi:10.1016/j.jqsrt.2006.11.007.
[52] L.H. Coudert, P. Chelin, Line position and line intensity analyses of the high-resolution spectrum of H218O up to the First Triad and J = 17, J. Mol. Spectrosc. This issue (2016). doi:10.1016/j.jms.2016.01.012.
[53] J. Orphal, A.A. Ruth, High-resolution Fourier-transform cavity-enhanced absorption spectroscopy in the near-infrared using an incoherent broad-band light source, Opt. Express 16 (2008) 19232-19243.
[54] R.A. Toth, Transition frequencies and absolute strengths of H217O and H218O in the 6.2-μm region, J. Opt. Soc. Am. B 9 (1992) 462-482.
[55] S.N. Mikhailenko, Vl.G. Tyuterev, G.Ch. Mellau, (000) and (010) States of H218O: analysis of rotational transitions in hot emission spectrum in the 400–850 cm-1 region, J. Mol. Spectrosc. 217 (2003) 195-211.
[56] A.-W. Liu, J.-H. Du, K.-F. Song, L. Wang, L. Wan, S.-M. Hu, High-resolution Fourier-transform spectroscopy of 18O-enriched water molecule in the 1080 – 7800 cm-1 region, J. Mol. Spectrosc. 237 (2006) 149-162.
[57] E. Kyrö, Centrifugal distortion analysis of pure rotational spectra of H216O, H217O, and H218O, J. Mol. Spectrosc. 88 (1981) 167-174.
[58] F. Matsushima, H. Nagase, T. Nakauchi, H. Odashima, K. Takagi, Frequency measurement of pure rotational transitions of H217O and H218O from 0.5 to 5 THz, J. Mol. Spectrosc. 193 (1999) 217-223.
[59] J.W.C. Johns, High-resolution far-infrared (20–350 cm-1) spectra of several isotopic species of H2O, J. Opt. Soc. Am. B 2 (1985) 1340-1354.
[60] C. Oudot, L. Régalia, S. Mikhailenko, X. Thomas, P. Von der Heyden, D. Décatoire, Fourier transform measurements of H218O and HD18O in the spectral range 1000 – 2300 cm-1, J. Quant. Spectrosc. Radiat. Trans. 113 (2012) 859-869.
[61] R.A. Toth, Water vapor measurements between 590 and 2582 cm-1: Line positions and strengths, J. Mol. Spectrosc. 190 (1998) 379-396.
[62] M.J. Down, J. Tennyson, J. Orphal, P. Chelin, A.A. Ruth, Analysis of an 18O and D enhanced water spectrum and new assignments for HD18O and D218O in the near-infrared region (6000 – 7000 cm-1) using newly calculated variational lists, J. Quant. Spectrosc. Radiat. Trans. 282 (2012) 1-8.
[63] S.N. Mikhailenko, S.A. Tashkun, L. Daumont, A. Jenouvrier, M. Carleer, S. Fally, A.C. Vandaele, Line positions and energy levels of the 18O substitutions from the HDO/D2O spectra between 5600 and 8800 cm-1, J. Quant. Spectrosc. Radiat. Trans. 111 (2010) 2185-2196.
[64] P.S. Ormsby, K.N. Rao, M. Winnewisser, B.P. Winnewisser, O.V. Naumenko, A.D. Bykov, L.N. Sinitsa, The 3ï?®2+ï?®3, ï?®1+ï?®2+ï?®3, ï?®1+3ï?®2, 2ï?®1+ï?®2, and ï?®2+2ï?®3 bands of D216O: The second hexade of interacting states, J. Mol. Spectrosc. 158 (1993) 109-130.
[65] G.Ch. Mellau, S.N. Mikhailenko, E.N. Starikova, S.A. Tashkun, H. Over, Vl.G. Tyuterev, Rotational levels of the (000) and (010) states of D216O from hot emission spectra in the 320-860 cm-1 region, J. Mol. Spectrosc. 224 (2004) 32-60.
[66] S.V. Shirin, N.F. Zobov, O.L. Polyansky, Theoretical line list of D216O up to 16,000 cm−1 with an accuracy close to experimental, J. Quant. Spectrosc. Radiat. Trans. 109 (2008) 549-558.
[67] http://spectra.iao.ru, Tomsk, 2012.
[68] A.-W. Liu, K.-F. Song, H.-Y. Ni, S.-M. Hu, O.V. Naumenko, I.A.Vasilenko, S.N. Mikhailenko, (000) and (010) energy levels of the HD18O and D218O molecules from analysis of their ï?®2 bands, J. Mol. Spectrosc. 265 (2011) 26-38.
[69] H.-Y. Ni, A.-W. Liu, K.-F. Song, S.-M. Hu, O.V. Naumenko, T.V. Kruglova, S.A. Tashkun. High-resolution spectroscopy of the triple-substituted isotopologue of water D218O: the first triad, Mol. Phys. 106 (2008) 1793-1801.
[70] J. Tennyson, P.F. Bernath, L.R. Brown, A. Campargue, A.G. Császár, L. Daumont, R.R. Gamache, J.T. Hodges, O.V. Naumenko, O.L. Polyansky, L.S. Rothman, A.C. Vandaele, N.F. Zobov, N. Dénes, A.Z. Fazliev, T. Furtenbacher, I.E. Gordon, S.-M. Hu, T. Szidarovszky, I.A. Vasilenko, IUPAC critical evaluation of the rotational-vibrational spectra of water vapor. Part IV: Energy levels and transition wavenumbers for D216O, D217O, and D218O, J. Quant. Spectrosc. Radiat. Trans. 142 (2014) 93-108.
[71] H. Partridge, D.W. Schwenke, The determination of an accurate isotope dependent potential energy surface for water from extensive ab initio calculations and experimental data, J. Chem. Phys. 106 (1997) 4618-4639.
[72] I.E. Gordon, L.S. Rothman, R.R. Gamache, D. Jacquemart, C. Boone, P.F. Bernath, M.W. Shephard, J.S. Delamere, S.A. Clough, Current updates of the water-vapor line list in HITRAN: A new “Diet” for air-broadened half-widths, J. Quant. Spectrosc. Radiat. Trans. 108 (2007) 389-402. doi:10.1016/j.jqsrt.2007.06.009.
[73] R.R. Gamache, A.L. Laraia, N2-, O2-, and air-broadened half-widths, their temperature dependence, and line shifts for the rotation band of H216O, J. Mol. Spectrosc. 257 (2009) 116-127. doi:10.1016/j.jms.2009.07.004.
[74] R.R. Gamache, Line shape parameters for water vapor in the 3.2 to 17.76 µm region for atmospheric applications, J. Mol. Spectrosc. 229 (2005) 9-18. doi:10.1016/j.jms.2004.08.004.
[75] D. Jacquemart, R. Gamache, L.S. Rothman, Semi-empirical calculation of air-broadened half-widths and air pressure-induced frequency shifts of water-vapor absorption lines, J. Quant. Spectrosc. Radiat. Trans. 96 (2005) 205-239. doi:10.1016/j.jqsrt.2004.11.018.
[76] L.S. Rothman, I.E. Gordon, R.J. Barber, H. Dothe, R.R. Gamache, A. Goldman, V.I. Perevalov, S.A. Tashkun, J. Tennyson, HITEMP, the high-temperature molecular spectroscopic database, J. Quant. Spectrosc. Radiat. Trans. 111 (2010) 2139-2150. doi:10.1016/j.jqsrt.2010.05.001.
[77] R.R. Gamache. University of Massachusetts Lowell. Unpublished results. (2014).
[78] M. Birk, G. Wagner, Temperatue-dependent air broadening of water in the 1250 – 1750 cm−1 range, J. Quant. Spectrosc. Radiat. Trans. 113 (2012) 889-928. doi:10.1016/j.jqsrt.2011.12.013.
[79] C.P. Rinsland, M.A.H. Smith, V. Malathy Devi, D. Chris Benner, Measurements of Lorentz-broadening coefficients and pressure-induced line shift coefficients in the ï?®2 band of D216O, J. Mol. Spectrosc. 150 (1991) 173-183.
[80] V. Malathy Devi, C.P. Rinsland, D. Chris Benner, M.A.H. Smith, Tunable diode laser measurements of air and N2 broadened half-widths in the ï?®2 band of D2O, Appl. Opt. 25 (1986) 336-338.
[81] C.P. Rinsland, M.A.H. Smith, V. Malathy Devi, D. Chris Benner, Measurements of Lorentz-broadening coefficients and pressure-induced line shift coefficients in the ï?®1 band of HD16O and the ï?®3 band of D216O, J. Mol. Spectrosc. 156 (1992) 507-511.
[82] R.A. Toth, Air- and N2-broadening parameters of HDO and D2O, 709 to 1931 cm-1, J. Mol. Spectrosc. 198 (1999) 358-370.
[83] R.R. Gamache, M. Farese, C.L. Renaud, A spectral line list for water isotopologues in the 1100-4100 cm-1 region for application to CO2-rich planetary atmospheres, J. Mol. Spectrosc. (in press). doi:10.1016/j.jms.2015.09.001.

Back to top CO2
[84] S.A. Tashkun, V.I. Perevalov, R.R. Gamache, J. Lamouroux, CDSD-296, high resolution carbon dioxide spectroscopic databank: Version for atmospheric applications, J. Quant. Spectrosc. Radiat. Transfer 152 (2015) 45–73.
[85] D. Jacquemart,  F. Gueye, O.M. Lyulin, E.V. Karlovets , D. Baron, V.I. Perevalov, Infrared spectroscopy of CO2 isotopologues from 2200 to 7000 cm-1: I—Characterizing experimental uncertainties of positions and intensities,  Quant. Spectrosc. Radiat. Transfer  113 (2012) 961–975.
[86] O.M. Lyulin, E.V. Karlovets, D. Jacquemart,  Y. Lu, A.W. Liu, V.I. Perevalov, Infrared spectroscopy of 17O- and 18O-enriched carbon dioxide in the 1700–8300 cm-1 wavenumber region, Quant. Spectrosc. Radiat. Transfer  113 (2012) 2167–2181.
[87] Yu.G. Borkov, D. Jacquemart, O.M. Lyulin, S.A. Tashkun, V.I. Perevalov, Infrared spectroscopy of 17O- and 18O-enriched carbon dioxide: Line positions and intensities in the 3200–4700 cm-1 region. Global modeling of the line positions of 16O12C17O and 17O12C17O, Quant. Spectrosc. Radiat. Transfer  137 (2014) 967–975.
[88] Yu.G. Borkov, D. Jacquemart, O.M. Lyulin, S.A. Tashkun, V.I. Perevalov, Infrared spectroscopy of 17O- and 18O-enriched carbon dioxide: Line positions and intensities in the 4681–5337 cm-1 region,  Quant. Spectrosc. Radiat. Transfer  159 (2015) 1–10.
[89] E.V. Karlovets, A. Campargue, D.Mondelain, S.Beguier, S. Kassi, S.A. Tashkun, V.I. Perevalov, High sensitivity Cavity Ring Down spectroscopy of 18O enriched carbon dioxide between 5850 and 7000 cm−1: I. Analysis and theoretical modeling of the 16O12C18O spectrum, J. Quant. Spectrosc. Radiat. Transfer  130 (2013) 116–133.
[90] E.V. Karlovets, A. Campargue, D.Mondelain, S. Kassi, S.A. Tashkun, V.I. Perevalov, High sensitivity Cavity Ring Down spectroscopy of 18O enriched carbon dioxide between 5850 and 7000 cm-1: Part II—Analysis and theoretical modeling of the 12C18O2, 13C18O2 and 16O13C18O spectra, J. Quant. Spectrosc. Radiat. Transfer  136 (2014) 71–88.
[91] E.V. Karlovets, A. Campargue, D.Mondelain, S. Kassi, S.A. Tashkun, V.I. Perevalov, High sensitivity Cavity Ring Down spectroscopy of 18O enriched carbon dioxide between 5850 and 7000 cm-1: Part III—Analysis and theoretical modeling of the 12C17O2, 16O12C17O, 17O12C18O, 16O13C17O and 17O13C18O spectra,  J. Quant. Spectrosc. Radiat. Transfer  136 (2014) 89–107.
[92] K.-F. Song, Y. Lu, Y. Tan, B. Gao, A.-W. Liu, S.-M. Hu, High sensitivity cavity ring down spectroscopy of CO  overtone bands near 790 nm, J. Quant. Spectrosc. Radiat. Transfer  112 (2011) 761–768.
[93] Y. Lu, A.-W. Liu, H. Pan, X.-F. Li, V.I. Perevalov, S.A. Tashkun, S.-M. Hu, High sensitivity cavity ring down spectroscopy of 13C16O2 overtone bands near 806 nm, J. Quant. Spectrosc. Radiat. Transfer  113 (2012) 2197–2204.
[94] H. Pan, X.-F. Li, Y. Lu, A.-W. Liu, V.I. Perevalov, S.A. Tashkun, S.-M. Hu, Cavity ring down spectroscopy of 18O and 17O enriched carbon dioxide near 795 nm, J. Quant. Spectrosc. Radiat. Transfer 114 (2013) 42–44.
[95] D. Golebiowski, M. Herman, O.M. Lyulin, 16O12C17O and 18O12C17O spectroscopy in the 1.2–1.25 mm region, Can. J. Phys. 91 (2013) 963-965.
[96] O.L. Polyansky, K. Bielska, M. Ghysels, L. Lodi, N.F. Zobov, J.T. Hodges and J. Tennyson, High accuracy CO2 line intensities determined from theory and experiment,  Phys. Rev. Lett. 114 (2015) 243001.
[97] E. Zak, J. Tennyson, O.L. Polyansky, L. Lodi, S.A. Tashkun and V.I. Perevalov, A room temperature CO2 line list with ab initio computed intensities, J. Quant. Spectrosc. Rad. Transfer 177 (2016) 31-42.
[98] R.R. Gamache, J. Lamouroux, V. Blot-Lafon, E. Lopes, An intercomparison of measured pressure-broadening, pressure shifting parameters of carbon dioxide and their temperature dependence, J. Quant. Spectrosc. Radiat. Transfer 135 (2014) 30-43.
[99] R.R. Gamache, J. Lamouroux, A.L. Laraia, J.-M. Hartmann, C. Boulet, Semiclassical calculations of half-widths and line shifts for transitions in the 30012←00001 and 30013←00001 bands of CO2  I: Collisions with N2, J. Quant. Spectrosc. Radiat. Transfer 113 (2012) 976-990.
[100] J. Lamouroux, R.R. Gamache, A.L. Laraia, J.-M. Hartmann, C. Boulet, Semiclassical calculations of half-widths and line shifts for transitions in the 30012←00001 and 30013←00001 bands of CO2  II: collisions with O2 and Air, J. Quant. Spectrosc. Radiat. Transfer 113 (2012) 991-1003.
[101] J. Lamouroux, R.R. Gamache, A.L. Laraia, J.-M. Hartmann, C. Boulet, Semiclassical calculations of half-widths and line shifts for transitions in the 30012←00001 and 30013←00001 bands of CO2  III: self collisions, J. Quant. Spectrosc. Radiat. Transfer 113 (2012) 1536-1546.
[102] R.R. Gamache, J. Lamouroux, The vibrational dependence of half-widths of CO2 transitions broadened by N2, O2, air, and CO2, J. Quant. Spectrosc. Radiat. Transfer 117 (2012) 93-103.
[103] R.R. Gamache, J.-M. Hartmann, Collisional parameters of H2O lines: effects of vibration, J. Quant. Spectrosc. Radiat. Transfer 83 (2004) 119-147.
[104] R.R Gamache, J. Lamouroux, Predicting accurate line shape parameters for CO2 transitions, J. Quant. Spectrosc. Radiat. Transfer 130 (2013) 158-171.
[105] X. Huang, R.R. Gamache, R.S. Freedman, D.W. Schwenke, T.J. Lee, Reliable InfraRed Line Lists for 13 CO2 Isotopologues up to E’=18,000 cm-1 and 1500K, with Line Shape Parameters,  J. Quant. Spectrosc. Radiat. Transfer 147 (2014) 134–144.

Back to top O3
[106] A. Barbe, M.-R. De Backer, E. Starikova, S.A. Tashkun, X. Thomas, Vl.G. Tyuterev, FTS high resolution spectra of 16O3 in 3500 and 5500 cm-1 regions. First example of new theoretical modelling for a polyad of strongly coupled states, J. Quant. Spectrosc. Radiat. Transfer 113 (2012) 829-839.
[107] A. Barbe. Université de Reims Champagne-Ardenne. Private communication. (2011).
[108] A. Barbe, J.J. Plateaux, S.N. Mikhailenko, Vl.G. Tyuterev, Infrared spectrum of ozone in the 4600 and 5300 cm-1 regions: High order accidental resonances through the analysis of the ν1+2ν2+3ν3-ν2, ν1+2ν2+3ν3, and 4ν1+ν3 bands, J. Molec. Spectrosc. 185 (1997) 408-416.
[109] A. Barbe, J.J. Plateaux, Vl.G. Tyuterev, S.N. Mikhailenko, Analysis of high resolution measurements of the 2ν1+3ν3 band of ozone: Coriolis interaction with the ν1+3ν2+2ν3 band, J. Quant. Spectrosc. Radiat. Transfer 59 (1998) 185-194.
[110] A. Barbe, A. Chichery, The 2ν1+ν2+3ν3 band of 16O3. Line positions and intensities, J. Molec.Spectrosc. 192 (1998) 102-110.
[111] A. Barbe, A. Chichery, Vl.G. Tyuterev, J.J. Plateaux, Analysis of high resolution measurements of the ν1+5ν3 band of ozone: Coriolis interactions with the 6ν3 and 3ν1+ ν2+2ν3 bands, Molec.Phys. 94 (1998) 751-757.
[112] A. Barbe, M.-R. De Backer, Vl.G. Tyuterev, A. Campargue, D. Romanini, S. Kassi, CW-cavity ring down spectroscopy of ozone molecule in the 5980 – 6220 cm-1 region, J. Molec.Spectrosc. 242 (2007) 156-175.
[113] A. Barbe, M.-R. De Backer, Vl.G. Tyuterev, S. Kassi, A. Campargue, CW-cavity ring down spectroscopy of ozone molecule in the 6220 – 6400 cm-1 region, J. Molec.Spectrosc. 246 (2007) 22-38.
[114] A. Campargue, M.-R. De Backer-Barilly, A. Barbe, Vl.G. Tyuterev, S. Kassi, The near infrared spectrum of ozone by CW-cavity ring down spectroscopy between 5850 and 7000 cm-1: New observations and exhaustive review, Phys. Chem. Chem. Phys. 10 (2008) 2925-2946.
[115] A. Campargue, S. Kassi, D. Romanini, A. Barbe, M.-R. De Backer, Vl.G. Tyuterev, CW-cavity ring down spectroscopy of ozone molecule in the 6625-6830 cm-1 region, J. Molec.Spectrosc. 240 (2006) 1-13.
[116] Y.L. Babikov, S.N. Mikhailenko, A. Barbe, Vl.G. Tyuterev, S&MPO – an information system for ozone spectroscopy on the WEB, J. Quant. Spectrosc. Radiat. Transfer 145 (2014) 169-196.
[117] S.N. Mikhailenko, A. Barbe, M.-R. De Backer-Barilly, Vl.G. Tyuterev, Update of line parameters of ozone in the 2550-2900 cm-1 region, Appl. Opt. 47 (2008) 4612-4618.
[118] A. Barbe, S. Mikhailenko, E. Starikova, M.-R. De Backer, Vl.G. Tyuterev, D. Mondelain, S. Kassi, A. Campargue, C. Janssen, S. Tashkun, R. Kochanov, R. Gamache. Ozone spectroscopy in the electronic ground state: High resolution spectra analyses and update of line parameters since 2003. J. Quant. Spectrosc. Radiat.Transfer 130 (2013) 172-190.
[119] A. Barbe, S.N. Mikhailenko, Vl.G. Tyuterev, A. Hamdouni, J.J. Plateaux, Analysis of the 2ï?®1+2ï?®2+ï?®3 band of ozone, J. Molec.Spectrosc. 171 (1995) 538-588.
[120] S. Mikhailenko, A. Barbe, Vl.G. Tyuterev, L. Régalia L, J.J. Plateaux, Line positions and intensities of the ν1+ν2+3ν3, ν2+4ν3, and 3ν1+2ν2 bands of ozone, J. Molec.Spectrosc. 180 (1996) 227-235.
[121] J.-M. Flaud, A. Barbe, C. Camy-Peyret, J.J. Plateaux, High resolution analysis of the 5ï?®3, 3ï?®1+ï?®2+ï?®3, and ï?®1+4ï?®3 bands of 16O3: Line positions and intensities, J. Molec.Spectrosc. 177 (1996) 34-39.
[122] Vl.G. Tyuterev, R. Kochanov, A. Campargue, S. Kassi, D. Mondelain, A. Barbe, E. Starikova, M.R. De Backer, P.G. Szalay, S. Tashkun, Does the “reef structure” at the ozone transition state towards the dissociation exist? New insight from calculations and ultrasensitive spectroscopy experiments, Phys. Rev. Lett. 113 (2014) 143002.
[123] R.O. Manuilova, O.A. Gusev, A.A. Kutepov, T. von Clarmann, H. Oelhaf, G.P. Stiller, A. Wegner, M. López-Puertas, F.J. Martin-Torres, G. Zaragoza, J.-M. Flaud, Modelling of non-LTE limb spectra of i.r. ozone bands for the MIPAS space experiment, J. Quant. Spectrosc. Radiat. Transfer 59 (1998) 405-422.
[124] G. Funke, M. López-Puerta, M. García-Comas, M. Kaufmann, M. Höpfner, G.P. Stiller, GRANADA: A Generic RAdiative traNsfer AnD non-LTE population algorithm, J. Quant. Spectrosc. Radiat. Transfer 113 (2012) 1771-1817.
[125] C. Clerbaux, J. Drummond, J.M. Flaud, J. Orphal. Thermal infrared: absorption and emission - trace gases and parameters. The Remote Sensing of Tropospheric Composition from Space, J.P. Burrows, U. Platt, and P. Borrell (eds.), ISBN 978-3-642-14790-6, Springer Verlag, Heidelberg and New York, 2011, Chapter 3, pp. 123-152.
[126] Vl.G. Tyuterev, S. Tashkun, M. Rey, R. Kochanov, A. Nikitin, T. Delahaye. Accurate spectroscopic models for methane polyads derived from a potential energy surface using high-order contact transformations. J. Phys. Chem. A 117 (2013) 13779-13805.
[127] Vl.G. Tyuterev, R.V. Kochanov, S.A. Tashkun, F. Holka, P. Szalay, New analytical model for the ozone electronic ground state potential surface and accurate ab initio vibrational predictions at high energy range, J. Chem. Phys. 139 (2013) 134307.
[128] J.J. Plateaux, L. Régalia, C. Boussin, A. Barbe, Multispectrum fitting technique for data recorded by Fourier transform spectrometer: Application to N2O and CH3D, J. Quant. Spectrosc. Radiat.Transfer 68 (2001) 507-520.
[129] J.M. Flaud, G. Wagner, M. Birk, C. Camy-Peyret, C. Claveau, M.R. De Backer-Barilly, A. Barbe, C. Piccolo, Ozone absorption around 10 ï?­m, J. Geophys. Res. 108D (2003) 4269. doi:10.1029/2002JD002755
[130] M.A.H. Smith, V. Malathy Devi, D. Chris Benner, The quest for ozone intensities in the 9–11 mm region: A retrospective, J. Quant. Spectrosc. Radiat. Transfer 113 (2012) 825-828.
[131] F. Holka, P.G. Szalay, T. Muller, Vl.G. Tyuterev, Toward an improved ground state potential energy surface of ozone, J. Phys.Chem. A 114 (2010) 9927-9935.

Back to top CH4
[132] A. Nikitin, V. Boudon, Ch. Wenger, S. Albert, L. R. Brown, S. Bauerecker, M. Quack, High Resolution Spectroscopy and First Global Analysis of the Tetradecad Region of Methane 12CH4. Phys. Chem. Chem. Phys, 15 (2013) 10071–10093.
[133] H.-M. Niederer, X.-G. Wang, T. Carrington Jr., S. Albert, S. Bauerecker, V. Boudon, Analysis of the rovibrational spectrum of methane 13CH4 in the infrared, J. Molec. Spectrosc. 291 (2013) 33–47.
[134] L. R. Brown, K. Sung, D. C. Benner, V. M. Devi, V. Boudon, T. Gabard, Ch. Wenger, A. Campargue, O. Leshchishina, S. Kassi, D. Mondelain, L. Wang, L. Daumont, L. Régalia, M. Rey, X. Thomas, Vl. G. Tyuterev, O. M. Lyulin, A. V. Nikitin, H. M. Niederer, S. Albert, S. Bauerecker, M. Quack, J. J. O’Brien, I. E. Gordon, L. S. Rothman, H. Sassada, A. Coustenis, M. A. H. Smith, T. Carrington Jr., X. G. Wang, A. W. Manz, P. T. Spickler, Methane Line Parameters in the HITRAN Database, J. Quant. Spectrosc. Radiat. Transf. 130 (2013) 201–219.
[135] R. Checa-Garcia, J. Landgraf, A. Galli, F. Hase, V. A. Velazco, H. Tran. V. Boudon, F. Alkemade, A. Butz, Mapping spectroscopic uncertainties into prospective methane retrieval errors from Sentinel-5 and its precursor, 8 (2015) 3617–3629.
[136] B. Amyay, M. Louviot, O. Pirali, R. Georges, J. Vander Auwera, V. Boudon, Global Analysis of the High Temperature Infrared Emission Spectrum of 12CH4 in the Dyad (ν2/ν4) Region, J. Chem. Phys. 144 (2016) 024312.
[137] V. M. Devi, D. C. Benner, K. Sung, T. J. Crawford, S. Yu, L. R. Brown, M. A. H. Smith, A. Mantz, V. Boudon, S. Ismail, Self- and Air-broadened Line Shapes in the 2ν3 P and R Branches of 12CH4, J. Molec. Spectrosc. 315 (2015) 114–136.
[138] V. M. Devi, D. C. Benner, K. Sung, L. R. Brown, T. J. Crawford, S. Yu, M. A. H. Smith, A. W. Mantz, V. Boudon, S. Ismail, Spectral Line Parameters Including Line Shapes in the 2ν3 Q Branch of 12CH4, J. Quant. Spectrosc. Radiat. Transf. 177 (2016) 152–169.
[139] L. Brown, Empirical line parameters of methane from 1.1 to 2.1 μm, J. Quant. Spectrosc. Radiat. Transf. 96 (2005) 251–270.
[140] A. Campargue (Private communication 2014)
[141] A. Campargue, O. Leshchishina, L. Wang, D. Mondelain, S. Kassi, The WKLMC empirical line lists (5852–7919cm-1) for methane between 80K and 296K: “final” lists in HITRAN format for atmospheric and planetary applications, J. Molec. Spectrosc. 291 (2013) 16–22.
[142] A. Campargue, O. Leshchishina, L. Wang, D. Mondelain, S. Kassi, A.V. Nikitin, Refinements of the WKMC empirical line lists (5852-7919 cm-1) for methane between 80 K and 296 K, J. Quant. Spectrosc. Radiat. Transf. 113 (2012) 1855–1873.
[143] L. Wang, S. Kassi, A. Campargue, Temperature dependence of the absorption spectrum of CH4 by high resolution spectroscopy at 81 K: (I) The region of the 2ν3 band at 1.66 µm, J. Quant. Spectrosc. Radiat. Transf. 111 (2010) 1130–1140.
[144] A. Campargue, L. Wang, D. Mondelain, S.Kassi, B. Bézard, E. Lellouch, M. Hirtzig, A Coustenis, C. de Bergh, P. Drossart, A complete empirical line list for methane at 80 K and 296 K (1.26-1.71 µm) for planetary applications. Icarus. 219 (2012) 110–128.
[145] A. Campargue, O. Leshchishina, D. Mondelain, S. Kassi, A. Coustenis, An improved empirical line list for methane in the region of the 2ν3 band at 1.66 µm. J. Quant. Spectrosc. Radiat. Transf. 118 (2013) 49–59.
[146] A. Campargue, L. Wang, S. Kassi, M. Mašát, O. Votava, Temperature dependence of the absorption spectrum of CH4 by high resolution spectroscopy at 81 K: (II) The icosad region (1.49-1.30 µm). J. Quant. Spectrosc. Radiat, Transf. 111 (2010) 1141–1151.
[147] O. Votava, M. Mašát, P. Pracna, S. Kassi, A. Campargue, Accurate determination of low state rotational quantum numbers (J<4) from planar-jet and liquid nitrogen cell absorption spectra of methane near 1.4 micron, Phys. Chem. Chem. Phys. 12 (2010) 3145–3155.
[148] L. Wang, D. Mondelain, S. Kassi, A. Campargue, The absorption spectrum of methane at 80 K and 294 K in the icosad (6717-7589 cm-1): improved empirical line lists, isotopologue identification and temperature dependence, J. Quant. Spectrosc. Radiat. Transf. 113 (2012) 47–57.
[149] A. Campargue, L. Wang, A. W. Liu, S. M. Hu, S. Kassi, Empirical line parameters of methane in the 1.63-1.48 µm transparency window by high sensitivity Cavity Ring Down Spectroscopy, Chem. Phys. 373 (2010) 203–210.
[150] A.V. Nikitin, X. Thomas, L. Régalia, L.Daumont, P. Von der Heyden,Vl.G. Tyuterev, L. Wang, S. Kassi, A. Campargue, Assignment of the 5ν4 and ν2+4ν4 band systems of 12CH4 in the 6287-6550 cm-1 region, J. Quant. Spectrosc. Radiat. Transf. 112 (2011) 28–40.
[151] L. Wang, S. Kassi, A. Liu, S. Hu, A. Campargue, The 1.58 µm transparency window of methane (6165-6750 cm-1): empirical line list and temperature dependence between 80 K and 296 K, J. Quant. Spectrosc. Radiat. Transf. 112 (2011) 937–951.
[152] D. Mondelain, S. Kassi, L. Wang, A. Campargue, The 1.28 µm transparency window of methane (6165-6750 cm-1): empirical line list and temperature dependence between 80 K and 296 K, Phys. Chem. Chem. Phys. 17 (2011) 7985–7996.
[153] L.A. Sromovsky, P.M. Fry, V. Boudon, A. Campargue, A. Nikitin, Comparison of line-by-line and band models of near-IR methane absorption applied to outer planet atmospheres, Icarus 218 (2012) 1–23.
[154] P.G.J. Irwin, C. de Bergh, R. Courtin, B. Bézard, N.A. Teanby, G.R. Davis, L.N. Fletcher, G.S. Orton, S.B. Calcutt, D. Tice, J. Hurley, The application of new methane line absorption data to Gemini-N/NIFS and KPNO/FTS observations of Uranus’ near- infrared spectrum, Icarus 220 (2012) 369–382.
[155] E. Lellouch, B. Sicardy, C. De Bergh, H.-U. Kaufl, S. Kassi, A. Campargue, Pluto’s lower atmosphere structure and methane abundance from high-resolution spectroscopy and stellar occultations, Astron. Astrophys. 495 (2009) L17–L21.
[156] C.de Bergh, R.Courtin, B. Bézard, A. Coustenis, E.Lellouch, M.Hirtzig, P. Rannou, P. Drossart, A. Campargue, S. Kassi, L. Wang, V. Boudon, A. Nikitin, V. Tyuterev, Applications of a new set of methane line parameters to the modeling of Titan's spectrum in the 1.58 micron window, Planetary and Space Science 61 (2012) 85–99.
[157] L. Wang, S. Kassi, A. Liu, S. Hu, A. Campargue, High sensitivity absorption spectroscopy of methane at 80 K in the 1.58 µm transparency window: Temperature dependence and importance of the CH3D contribution, J. Molec. Spectrosc. 261 (2010) 41–52.
[158] S. Kassi, B. Gao, D. Romanini, A. Campargue, The near infrared (1.30 - 1.70 µm) absorption spectrum of methane down to 77 K, Phys. Chem. Chem. Phys. 10 (2008) 4410–4419.
[159] A.V. Nikitin, O.M. Lyulin, S. N. Mikhailenko, V. I. Perevalov, N.N. Filippov, I.M. Grigoriev, I. Morino, T. Yokota, R. Kumazawa, T. Watanabe, GOSAT-2009 methane spectral line list in the 5550–6236 cm-1 range, J. Quant Spectrosc Radiat Transf. 111 (2010) 2211–2224.
[160] S. Béguier, S. Kassi, A. Campargue, An empirical line list for methane in the 1.25 µm transparency window, J. Molec. Spectrosc. 308–309 (2015) 1–5.
[161] S. Béguier, A. W. Liu, A. Campargue, An empirical line list for methane near 1 µm (9028-10435 cm-1), J. Quant. Spectrosc. Radiat. Transf. 166 (2015) 6–12.
[162] D. Chris Benner, V. Malathy Devi, J.J. O’Brien, S. Shaji, P.T. Spickler, C.P. Houck, J.A. Coakley, J. Dolph, K. Rankin, Empirical line parameters of CH4 from 10923 to 11502 cm-1, in preparation. Private communication 2015.

Back to top O2
[163] I. E. Gordon, S. Kassi, A. Campargue, G. C. Toon, First identification of the electric quadrupole transitions of oxygen in solar and laboratory spectra, J. Quant. Spectrosc. Radiat. Transfer  111 (2010), 1174 – 1183.
[164] I. E. Gordon, L. S. Rothman, G. C. Toon, Revision of spectral parameters for the B- andï?§-bands of oxygen and their validation against atmospheric spectra, J. Quant. Spectrosc. Radiat. Transfer 112 (2011), 2310 – 2322.
[165] O. Leshchishina, S. Kassi, I. E. Gordon, L. S. Rothman, L. Wang, A. Campargue, High sensitivity CRDS of the   band of oxygen near 1.27µm: Extended observations, quadrupole transitions, hot bands and minor isotopologues, J. Quant. Spectrosc. Radiat. Transfer 111 (2010), 2236 – 2245.
[166] O. Leshchishina, S. Kassi, I. E. Gordon, S. Yu, A. Campargue, The   band of 16O17O, 17O18O and 17O2 by high sensitivity CRDS near 1.27ï?­m, J. Quant. Spectrosc. Radiat. Transfer 112 (2011), 1257 – 1265.
[167] D. A. Long, D. K. Havey, M. Okumura, H. M. Pickett, C. E. Miller and J. T. Hodges, Laboratory measurements and theoretical calculations of O2 A-band electric quadrupole transitions, Phys. Rev. A 80 (2009), 042513.
[168] D. A. Long, D. K. Havey, M. Okumura, C. E. Miller and J. T. Hodges, O2 A-band line parameters to support atmospheric remote sensing, J. Quant. Spectrosc. Radiat. Transfer 111 (2010), 2021 – 2036.
[169] D. A. Long, D. K. Havey, S. Yu, M. Okumura, C. E. Miller, J. T. Hodges, O2 A-band line parameters to support atmospheric remote sensing. Part II: The rare isotopologues, J. Quant. Spectrosc. Radiat. Transfer 112 (2011), 2527 – 2541.
[170] S. Yu, B. Drouin, and C. Miller, High resolution spectral analysis of oxygen IV. Energy levels, partition sums, band constants, RKR potentials, Franck-Condon factors involving the   and   states, J. Chem. Phys. 141 (2014), 174302.
[171] B. Drouin, H. Gupta, S. Yu, C. Miller, and H. Muller, High resolution spectral analysis of oxygen II. rotational spectra of   O2 isotopologues, J. Chem. Phys. 137 (2012), 024305.
[172] B. Drouin, S. Yu, B. Elliott, T. Crawford, and C. Miller, High resolution spectral analysis of oxygen III. Laboratory investigation of the airglow bands, J. Chem. Phys. 139 (2013), 144301.
[173] S. Yu, C. Miller, B. Drouin, and H. Muller, High resolution spectral analysis of oxygen I. isotopically invariant Dunham fit for the   states, J. Chem. Phys. 137 (2012), 024304.
[174] H. Edwards, D. Long, and K. Najm, The pure rotation Raman spectrum of 17O18O, J. Raman Spectrosc. 17 (1986), 431 – 432.

Back to top SO2
[175] H.S.P. Müller, S. Brünken, Accurate rotational spectroscopy of sulfur dioxide, SO2, in its ground vibrational and first excited bending states, v2 = 0, 1, up to 2 THz, J. Mol. Spectrosc. 232 (2005) 213–222.
[176] S.P. Belov, M.Yu. Tretyakov, I.N. Kozin, E. Klisch, G. Winnewisser, W.J. Lafferty, J.-M. Flaud, High Frequency Transitions in the Rotational Spectrum of SO2, J. Mol. Spectrosc. 191 (1998) 17–27.
[177] H.S.P. Müller, J. Farhoomand, E.A. Cohen, B. Brupbacher-Gatehouse, M. Schäfer, A. Bauder, G. Winnewisser, The Rotational Spectrum of SO2 and the Determination of the Hyperfine Constants and Nuclear Magnetic Shielding Tensors of 33SO2 and SO17O, J. Mol. Spectrosc. 201 (2000) 1–8.
[178] S.C. Mehrotra, G. Bestmann, H. Dreizler, H. Mäder, Contribution to the investigation of T2-relaxation: rotational transitions of OCS and SO2, Z. Naturforsch. 39a (1984) 633–636.
[179] S.C. Mehrotra, H. Dreizler, H. Mäder, J-Dependence of T2-parameters for rotational transitions of SO2 and CH3OH in K-band, Z. Naturforsch. 40a (1985) 683–685.
[180] P.A. Helminger, F. DeLucia, The submillimeter wave spectrum of 32S16O2, 32S16O2 (ν2), and 34S16O2, J. Mol. Spectrosc. 111 (1985) 66–72.
[181] E.A. Alekseev, S.F. Dyubko, V.V. Ilyushin, S.V. Podnos, The High-Precision Millimeter-Wave Spectrum of 32SO2, 32SO2 (ν2), and 34SO2. J. Mol. Spectrosc. 176 (1996) 316–320.
[182] D. Patel, D. Margolese, T.R. Dyke. Electric dipole moment of SO2 in ground and excited vibrational states, J. Chem. Phys. 70 (1979) 2740−2747.

Back to top NH3
[183] M.J. Down, C. Hill, S.N. Yurchenko, J. Tennyson, L.R. Brown, I. Kleiner, Re-analysis of ammonia spectra: Updating the HITRAN 14NH3 database, J. Quant. Spectrosc. Radiat. Transfer 130 (2013) 260-272.
[184] N. Yurchenko, R.J. Barber, J. Tennyson, A variationally computed hot line list for NH3, Mon. Not. R. astron. Soc. 413 (2011) 1828-1834.
[185] K. Sung, L. R. Brown, X. Huang, D. W. Schwenke, T. J. Lee, S. L. Coy,  K. K. Lehmann, Extended line positions, intensities, empirical lower state energies and quantum assignments of NH3 from 6300 to 7000 cm-1, J. Quant. Spectrosc. Radiat. Transfer 113 (2012) 1066-1083.
[186] P. Cacciani, P. Cermak, J. Cosleou, M. Khelkhal, New progress in spectroscopy of ammonia in the infrared 1.5 µm range using evolution of spectra from 300 K down to 122 K, J. Quant. Spectrosc. Radiat. Transfer  113 (2012) 1084–1091.
[187] V. Nemtchinov, K. Sung, P. Varanasi, Measurements of line intensities and half-widths in the 10 um bands of 14NH3, J. Quant Spectrosc. Radiat. Transfer 243 (2004) 243– 265.
[188] A.R. Al-Derzi, T. Furtenbacher, J. Tennyson, S.N. Yurchenko, A.G. Császár, MARVEL analysis of the measured high-resolution spectra of 14NH3, J. Quant. Spectrosc. Radiat. Transfer 161 (2015) 117-130.
[189] J. Tennyson, S.N. Yurchenko, ExoMol: molecular line lists for exoplanet and other atmospheres, Mon. Not. R. astr. Soc., 425 (2012) 21-33.
[190] K. Sung, S. Yu, J. Pearson, F. Kwabia Tchana, L. Manceron, O. Pirali, Far-infrared 14NH3 line positions and intensities measured with an FT-IR and AILES beam line, Synchrotron SOLEIL (submitted to J. Molec.Spectrosc.)
[191] J. C. Pearson, S. Yu, O. Pirali, Modeling the spectrum of the 2v2 and ν4 states of ammonia to experimental accuracy (submitted to J. Molec.Spectrosc.)
[192] E.J. Barton, S.N. Yurchenko, J. Tennyson, S. Beguier, A. Campargue, A near infrared line list for NH3: Analysis of a Kitt Peak spectrum after 35 years, J. Molec.Spectrosc. 325 (2016) 7-12.

Back to top HNO3
[193] A. Perrin and R. Mbiaké, The ν5 and 2ν9 bands of the 15N isotopic species of nitric acid (H15NO3): Line positions and intensities, J. Molec. Spectrosc. 237 (2006) 27-35
[194] A. Perrin, J. Orphal, J.-M.Flaud, S.Klee, G.Mellau, H. Mäder, D. Walbrodt, M. Winnewisser, New analysis of the ï?®5  and 2ï?®9 bands of HNO3 by infrared and millimeter wave techniques: line positions and intensities, J. Molec.Spectrosc. 228 (2004) 375-391.
[195] J-M. Flaud, G. Brizzi, M. Carlotti, A. Perrin, M. Ridolfi, MIPAS database: validation of HNO3 line parameters using MIPAS satellite measurements, Atmos. Chem. Phys. 6 (2006) 5037–5048.
[196] G. Brizzi, M. Carlotti, J-M. Flaud, A. Perrin and M. Ridolfi. First observation of H15NO3 in atmospheric spectra, Geophys. Res. Lett. 34 (2007) L038025.  
[197] G. Brizzi, E. Arnone, M. Carlotti, B.M. Dinelli, J.-M. Flaud, E. Papandrea, A. Perrin and M. Ridolfi. Retrieval of atmospheric H15NO3/ H14NO3 isotope ratio profile from MIPAS/ENVISAT limb measurements, J. Geophys. Res. 114 (2009) doi:10.1029/2008JD011504.

Back to top H2CO
[198] D. Jacquemart, F. Kwabia Tchana, N. Lacome, A. Perrin, A. Laraia, R.R. Gamache, Formaldehyde around 3.5 and 5.7-µm: measurement and calculation of broadening coefficients, J. Quant. Spectrosc. Radiat. Transfer 111 (2010) 1209–1222.
[199] S. Brünken, H.S.P. Müller, F. Lewen, G. Winnewisser, High accuracy measurements on the ground state rotational spectrum of formaldehyde (H2CO) up to 2 THz, Phys. Chem. Chem. Phys. 5 (2003) 1515–1518.
[200] H.S.P. Müller, R. Gendriesch, F. Lewen, G. Winnewisser, The Submillimeter-wave Spectrum of the Formaldehyde Isotopomer H2C18O in its Ground Vibrational State, Z. Naturforsch. 55a (2000) 486–490.
[201] H.S.P. Müller, R. Gendriesch, L. Margulès, F. Lewen, G. Winnewisser, R. Bocquet, J. Demaison, U. Wötzel, H. Mäder, Spectroscopy of the formaldehyde isotopomer H213CO in the microwave to terahertz region, Phys. Chem. Chem. Phys. 2 (2000) 3401–3404.
[202] R. Cornet, G. Winnewisser, A precise study of the rotational spectrum of formaldehyde H212C16O, H213C16O, H212C18O, H213C18O, J. Mol. Spectrosc. 80 (1980) 438–452.
[203] R. Bocquet, J. Demaison, L. Poteau, M. Liedtke, S. Belov, K.M.T. Yamada, G. Winnewisser, C. Gerke, J. Gripp, Th. Köhler, The Ground State Rotational Spectrum of Formaldehyde, J. Mol. Spectrosc. 177 (1996) 154–159.
[204] H.S.P. Müller, G. Winnewisser, J. Demaison, A. Perrin, A. Valentin, The Ground State Spectroscopic Constants of Formaldehyde, J. Mol. Spectrosc. 200 (2000) 143–144.
[205] B. Fabricant, D. Krieger, S. Muenter, Molecular beam electric resonance study of formaldehyde, thioformaldehyde, and ketene, J. Chem. Phys. 67 (1977) 1576–1586.
[206] A.F. Al-Refaie, S.N. Yurchenko, A. Yachmenev and J. Tennyson, ExoMol line lists VIII: A variationally computed line-list for hot formaldehyde It is published in Mon. Not. R. astr. Soc., 448, 1704-1714 (2015)

Back to top C2H6
[207] V.M. Devi, C.P. Rinsland D.C. Benner, R. L. Sams, T. A. Blake, Multispectrum analysis of the ν9 band of 12C2H6: Positions, intensities, self- and N2-broadened half-width coefficients, J. Quant. Spectrosc. Radiat. Transfer 111 (2010) 1234-51.
[208] V.M. Devi, D.C. Benner, C.P. Rinsland, M. A. H. Smith, R. L. Sams, T. A. Blake, J.-M. Flaud, K. Sung, L.R. Brown, A.W. Mantz, Multispectrum measurements of spectral line parameters including temperature dependences of N2- and self-broadened half-width coefficients in the region of the ν9 band of 12C2H6, J. Quant. Spectrosc. Radiat. Transfer 111 (2010) 2481-2504.
[209] V.M. Devi, D.C. Benner, K. Sung, T.J. Crawford, A.W. Mantz, Line positions and intensities for the ν12 band of 13C12CH6, J. Molec.Spectrosc. 301 (2014) 28–38.
[210] N. Moazzen-Ahmadi, J. Norooz Oliaee, I. Ozier, E. H. Wishnow, K. Sung, T. Crawford, L. R. Brown, V. M. Devi,  An intensity study of the torsional bands of ethane at 35 μm,  J. Quant. Spectrosc. Radiat. Transfer 151 (2015) 123–132.
[211] C. di Lauro, F. Lattanzi, L.R. Brown, K. Sung, J. Vander-Auwera, A.W. Mantz, M.A.H. Smith, High resolution investigation of the 7 μm region of the ethane spectrum. Planetary and Space Science for the Titan, Through Time Workshop (Special Issue) 60 (2012) 93-101, doi:10.1016/j.pss.2011.01.008.
[212] C. di Lauro, F. Lattanzi, L. R. Brown,  K. Sung, A. W. Mantz, M. A. H. Smith, The v4, v9, v10 and v6+v11 bands of 12CH313CH3 between 1245 and 1550 cm-1,  J. Molec. Spectrosc. 304 (2014) 12-24.
[213] A.M. Daly, B.J. Drouin, J.C. Pearson, K. Sung, L.R. Brown, A.W. Mantz, M.A.H. Smith, The v17 band of C2H5D from 770 to 880 cm-1, J. Molec.Spectrosc. 316 (2015) 1-10.
[214] AS Pine, C.P. Rinsland, The role of torsional hot bands in modeling atmospheric ethane, J. Quant. Spectrosc. Radiat. Transfer 62 (1999) 445-458.
[215] J.J. Harrison, N. D. C. Allen, P. F. Bernath, Infrared absorption cross sections for ethane (C2H6) in the 3 µm region,  J. Quant. Spectrosc. Radiat. Transfer 111 (2010) 357-363.
[216] R. J. Hargreaves, P. F. Bernath, D. R. T Appadoo, Relative high-resolution absorption cross sections of C2H6 at low temperatures, J. Molec.Spectrosc.315 (2015) 102-106.
[217] G. L. Villanueva, M. J. Mumma, K. Magee-Sauer, Ethane in planetary and cometary atmospheres: Transmittance and fluorescence models of the v7 band at 3.3 µm, J. Geophys. Res. 116 (2011) E08012, doi:10.1029/2010JE003794.  
[218] F. Lattanzi, C. di Lauro, J. Vander Auwera, Toward the understanding of the high resolution infrared spectrum of C2H6 near 3.3 µm, J. Molec.Spectrosc. 267 (2011) 71-79.

Back to top CH3D
[219] A.V. Nikitin, L. R. Brown, M. Rey, Vl. G. Tyuterev,  K. Sung, M. A. H. Smith, A.W. Mantz. Preliminary modeling of CH3D from 4000 to 4550 cm-1. J. Quant. Spectrosc. Radiat. Transfer 114 (2013) 1-12.
[220] V.M. Devi, D.C. Benner, MAH Smith, C.P. Rinsland , Measurements of air broadened width and air induced shift coefficients and line mixing in the v5 band of 12CH3D, J. Quant. Spectrosc. Radiat. Transfer 68 (2001) 135-161.
[221] V.M. Devi, D.C. Benner, MAH Smith, C.P. Rinsland, L.R. Brown, Self- and nitrogen- broadening, pressure induced shift and line mixing coefficients in the v5 of 12CH3D using a multi-spectrum fitting procedure, J. Quant. Spectrosc. Radiat. Transfer 74 (2002)1-41.  
[222] L. R. Brown,  K. Sung, D. C. Benner, V. M. Devi, V. Boudon, T. Gabard, C. Wenger, A. Campargue, O. Leshchishina, S. Kassi, D. Mondelain, L. Wang, L. Daumont, L. Régalia, M. Rey, X. Thomas, Vl. G. Tyuterev, O. M.  Lyulin, A. V. Nikitin, H. M. Niederer, S. Albert, S. Bauerecker ,  M. Quack, I. E. Gordon, L. S. Rothman, H. Sasada, A. Coustenis, M. A. H. Smith, T. Carrington Jr., X. G. Wang, A. W. Mantz, P. T. Spickler, Methane line parameters in the HITRAN 2012 database, J. Quant. Spectrosc. Radiat. Transfer 130 (2013) 201-219.
[223] Y.Lu, D. Mondelain, S. Kassi and A.Campargue, The CH3D absorption spectrum in the 1.58 micron transparency window of methane :empirical line lists and temperature dependence between 81K and 294K, J. Quant. Spectrosc. Radiat. Transfer 112 (2011) 2683-2697.

Back to top C2H2
[224] J. Vander Auwera, Absolute intensities measurements in the   band of 12C2H2: analysis of Herman–Wallis effects and forbidden transitions, J. Mol. Spectrosc. 201 (2000) 143–150.
[225] M. Matsuura, P.R. Wood, G.C. Sloan, A.A. Zijlstra, J.T. van Loon, M.A.T. Groenewegen, et al., Spitzer observations of acetylene bands in carbon-rich asymptotic giant branch stars in the Large Magellanic Cloud, Mon. Not. Roy. Astron. Soc. 371 (2006) 415–420.
[226] L. Gomez, D. Jacquemart, N. Lacome, J.-Y. Mandin, Line intensities of 12C2H2 in the7.7 µm spectral region, J. Quant. Spectrosc. Radiat. Transfer 110 (2009) 2102–2114.
[227] L. Gomez, D. Jacquemart, N. Lacome, J.-Y. Mandin, New line intensity measurements for 12C2H2 around 7.7 µm and HITRAN format line list for applications, J. Quant. Spectrosc. Radiat. Transfer 111 (2010) 2256–2264.

Back to top C2H4
[228] W.J. Lafferty, J.-M. Flaud, F. Kwabia Tchana, The high-resolution infrared spectrum of ethylene in the 1800–2350 cm-1 spectral region, Molec. Phys.. 109:21(2011) 2501-2510.
[229] A. Ben Hassen, F. Kwabia Tchana, J.-M. Flaud, W.J. Lafferty, X. Landsheere , H. Aroui,  Absolute line intensities for ethylene from 1800 to 2350 cm-1, J. Molec. Spectrosc. 282 (2012) 30–33.
[230] J.-M. Flaud, W.J. Lafferty, Robert Sams, V. Malathy Devi, High resolution analysis of the ethylene-1-13C spectrum in the 8.4–14.3-µm region, J. Molec. Spectrosc. 259 (2010) 39–45.
[231] J.-M. Flaud, W.J. Laffert , V. Malathy Devi, R.L. Sams, D. Chris Benner, Absolute line intensities and self-broadened half-width coefficients in the ethylene-1-13C bands in the 700–1190 cm-1 region, J. Molec. Spectrosc. 267 (2011) 3–12.

Back to top HNC
[232] G.J. Harris, O.L. Polyansky and J. Tennyson, Opacity data for HCN and HNC from a new ab initio linelist, Astrophys. J. 578 (2002) 657-663.
[233] G.J. Harris, J. Tennyson, B.M. Kaminsky, Ya.V. Pavlenko, and H.R.A. Jones, Improved HCN/HNC linelist, model atmospheres synthetic spectra for WZ Cas, Mon. Not. R. astron. Soc. 367 (2006) 400-406.
[234] G.C. Mellau, Complete experimental rovibrational eigen energies of HCN up to 6880 cm-1 above the ground state, J. Chem. Phys. 134 (2011), 234-303.
[235] G.C. Mellau, Rovibrational eigen energy structure of the H,C,N molecular system, J. Chem. Phys. 134 (2011) 194-302.
[236] R.J. Barber, J. Strange, C. Hill, O.L. Polyansky, G. Mellau, S.N. Yurchenko and J. Tennyson, ExoMol Molecular linelists: III An improved hot rotation-vibration line list for HCN and HNC, Mon. Not. Roy. Astron. Soc. 437 (2014) 1828-1835.

Back to top C2N2
[237] A. Fayt, A. Jolly, Y. Benilan, L. Manceron, F. Kwabia-Tchana, J.-C. Guillemin, Frequency and intensity analysis of the far infrared ν5 band complex of cyanogen (C2N2) and applications to Titan, J. Quant. Spectrosc. Radiat. Transfer 113 (2012) 1195-1219.
[238] N.A. Teanby, P.G.J. Irwin, R. deKok, A. Jolly, B. Bézard, C.A. Nixon, S.B. Calcutt, Titan’s stratospheric C2N2, C3H4, and C4H2 abundance from Cassini/CIRS far-infrared spectra, Icarus 220 (2009) 620-631.
[239] K.K. Kim, W.T. King, Integrated infrared intensities in cyanogen, J. Chem. Phys 80 (1984) 974-977.
[240] J.C. Grecu, B.P. Winnewisser, M. Winnewisser, Absolute rovibrational line- intensities in the ν5 band system of cyanogen NCCN, J. Molec. Spectrosc. 159(2) (1993) 551-571.

Back to top C4H2
[241] A. Jolly, A. Fayt, Y. Benilan, D. Jacquemart, C.A. Nixon, D.E. Jennings, The ν8  bending mode of diacetylene: from laboratory spectroscopy to the detection of 13C isotopologues in Titan’s atmosphere, Astrophys. J. 714 (2010) 852-859.
[242] A. Jolly, V. Cottini, A. Fayt, L. Manceron, F. Kwabia-Tchana, Y. Benilan, J-C. Guillemin, C. Nixon, P. Irwin, Gas phase dicyanoacetylene (C4N2) on Titan: new experimental and theoretical spectroscopy results applied to Cassini CIRS data, Icarus 248 (2015) 340-348.
[243] J. Cernicharo, A. Heras, J. Pardo, A. Tielens, M. Guelin, E. Dartois, R. Neri, L. Water,  Methylpolyynes and Small Hydrocarbons in CRL 618, Astrophys. J. 546 (2001) 127-130.
[244] S. Vinatier, B. Bezard, S. Lebonnois, N.A. Teanby, R.K. Achterberg, N. Gorius, A. Mamoutkine, E. Guandique, A. Jolly, D.E. Jennings, Seasonal variation in Titan’s middle atmosphere during the northern spring derived from Cassini/CIRS observations, Icarus 250 (2015) 95-115.
[245] T. Koops, T. Visser, W.M.A. Smit, The harmonic force field and absolute infrared intensities of diacetylene, J. Molec. Struct. 125 (1984) 179-196.
[246] A. Jolly, L. Manceron, F. Kwabia-Tchana, Y. Benilan, M-C. Gazeau, Revised infrared bending mode intensities for diacetylene (C4H2): application to Titan, Planetary and Space Sciences 97 (2014) 60-64.
[247] M. Khlifi, P. Paillous, C. Delpech, M. Nishio, P. Bruston, F. Raulin, Absolute IR band intensities of diacetylene in the 250-4300 cm-1 region - implications for Titan's atmosphere, J. Molec. Spectrosc. 174 (1995) 116-122.

Back to top CH3Cl
[248] A.V. Nikitin, J.-P. Champion, New ground state constants of 12CH335Cl and 12CH337Cl from global polyad analysis, J. Molec. Spectrosc. 230 (2005) 168–173.
[249] A.V. Nikitin, J.-P. Champion, H. Bürger, Global analysis of 12CH335Cl and 12CH337Cl: simultaneous fit of the lower five polyads (0–2600 cm-1), J. Molec. Spectrosc. 230 (2005) 174–184.
[250] J.P. Bouanich, G. Blanquet, J. Walrand. Diode-laser measurements of self-broadening coefficients and line strengths in the v3 band of CH335C1. J. Quant. Spectrosc. Radiat. Transfer 51 (1994) 573–578.
[251] G. Blanquet, J. Walrand, Spectral intensities in the ï?®3 band of 12CH337CI, J. Molec. Spectrosc. 133 (1989) 471–474.
[252] G. Blanquet, J. Walrand, M. Dang-Nhu, Absolute line intensities of the ï?®6 band of CH335Cl at 10µm, J. Molec. Spectrosc. 159 (1993) 156–160.
[253] G. Blanquet, J. Walrand, Intensities of the ï?®6 band of CH337Cl at 10µm, J. Molec. Spectrosc. 162 (1993) 513–515.
[254] A. Barbouchi Ramchani, D. Jacquemart, M. Dhib, H. Aroui, Line positions, intensities and self-broadening coefficients for the ν5 band of methyl chloride, J. Quant. Spectrosc. Radiat. Transfer 120 (2013) 1–15.
[255] C. Chackerian, Jr, L.R. Brown, N. Lacome, G. Tarrago, Methyl chloride ï?®5 region lineshape parameters and rotational constants for the ï?®2, ï?®5 and 2ï?®3 vibrational bands, J. Mol. Spectrosc. 191 (1998) 148–157.
[256] F. Cappellani, G. Restelli, G. Tarrago, Absolute infrared intensities in the fundamentals υ2 and υ5 of 12CH335Cl, J. Molec. Spectrosc. 146 (1991) 326–333.
[257] C. Bray, A. Perrin, D. Jacquemart, N. Lacome, The ï?®1, ï?®4 and 3ï?®6 bands of methyl chloride in the 3.4 µm region: Line positions and intensities, J. Quant. Spectrosc. Radiat. Transfer 112 (2011) 2446–2462.
[258] A. Barbouchi Ramchani, D. Jacquemart, M. Dhib, H. Aroui, Theoretical calculation of self-broadening coefficients for the ν5 band of methyl chloride at various temperatures, J. Quant. Spectrosc. Radiat. Transfer 134 (2014) 1–8.
[259] A. Barbouchi Ramchani, D. Jacquemart, M. Dhib, H. Aroui, N2-broadening coefficients of methyl chloride at various temperatures, J. Quant. Spectrosc. Radiat. Transfer 148 (2014) 186–196.
[260] C. Bray, D. Jacquemart, J. Buldyreva, N. Lacome, A. Perrin, N2-broadening coefficients of methyl chloride at room temperature, J. Quant. Spectrosc. Radiat. Transfer 113 (2012) 1102–1112.
[261] C. Bray, D. Jacquemart, N. Lacome, M. Guinet, A. Cuisset, S. Eliet, F. Hindle, G. Mouret, F. Rohart, J. Buldyreva, Analysis of self-broadened pure rotational and rovibrational lines of methyl chloride at room temperature, J. Quant. Spectrosc. Radiat. Transfer 116 (2013) 87–100.
[262] M. Guinet, F. Rohart, J. Buldyreva, V. Gupta, S. Eliet, R. Motiyenko, L. Margulès, A. Cuisset, F. Hindle, G. Mouret, Experimental studies by complementary terahertz techniques and semi-classical calculations of N2-broadening coefficients of CH3Cl, J. Quant. Spectrosc. Radiat. Transfer 113 (2012) 1113–1126.
[263] A.S. Dudaryonok, N.N. Lavrentieva, J. Buldyreva, CH3Cl self-broadening coefficients and their temperature dependences, J. Quant. Spectrosc. Radiat. Transfer 130 (2013) 321–326.
[264] J. Buldyreva, Air-broadening coefficients of CH335Cl and CH337Cl rovibrational lines and their temperature dependence by a semi-classical approach, J. Quant. Spectrosc. Radiat. Transfer 130 (2013) 315–320.

Back to top H2S
[265] C. C. Travis, E. L. Etnier, Health Risks of Energy Technologies, Westview Press for the American Association for the Advancement of Science, 1983, 278 pages.
[266] S. Seager, Exoplanet Atmospheres: Physical Processes, Princeton University Press, 2010, 264 pages.
[267] Al. A.A. Azzam, S.N. Yurchenko, J. Tennyson, M.-Al. Martin-Drumel, O. Pirali, Terahertz spectroscopy of hydrogen sulfide, J. Quant. Spectrosc. Radiat. Transfer. 130 (2013) 341–351.
[268] O.V. Naumenko. Private communication  (2013).
[269] O.N. Ulenikov, A.B. Malikova, M. Koivusaari, S. Alanko, R. Anttila, High resolution vibrational–rotational spectrum of H2S in the region of the ν2 fundamental band, J. Molec.Spectrosc. 176 (1996) 229-235.
[270] J-M. Flaud, C. Camy-Peyret, J.W.C. Johns, The far-infrared spectrum of hydrogen sulphide. The (000) rotational constants of H232S, H233S and H234S, Can. J. Phys. 61 (1983) 1462-1473.
[271] L. R. Brown, J. Crisp, D. Crisp, O.V. Naumenko, M. A. Smirnov, L. N. Sinitsa, A. Perrin, The absorption spectrum of H2S between 2150 and 4260 cm-1: Analysis of the position and intensities in the first (2v2, v1 and v3) and second (3v2, v1+v2 and v2+v3) triad regions, J. Molec.Spectrosc. 188 (1998) 148-174.
[272] E.R. Polovtseva, N.A. Lavrentieva, S.S. Voronina, O.V. Naumenko, A.Z. Fazliev, Information system for molecular spectroscopy.  Ro-vibrational transitions and energy levels of the hydrogen sulfide molecule, Atmos. Ocean. Opt. 251 (2012) 57-65.
[273] A. D. Bykov, O.V. Naumenko, M. A. Smirnov, L. N. Sinitsa L. R. Brown, J. Crisp, D. Crisp, The infrared spectrum of H2S from 1 to 5μm, Can. J. Phys. 72 (1994) 989-999.
[274] L.R. Brown, O.V. Naumenko, E.R. Polovtseva, L.N. Sinitsa, Hydrogen sulfide absorption spectrum in the 5700-6600 cm-1 spectral region. Proc. of SPIE 14th Symposium on High-Resolution Molecular Spectroscopy, Editors L.N. Sinitsa, S.N. Mikhailenko 5311 (2003) 59-67.
[275] L.R. Brown, O.V. Naumenko, E.R. Polovtseva, L. N. Sinitsa, Absorption spectrum of H2S between 7200 and 7890 cm-1, Proc. of SPIE Tenth Joint International Symposium on Atmospheric and Ocean Optics. Atmospheric Physics. Part I: Radiation Propagation in the Atmosphere and Ocean, V. 5396, pp. 42-48. Editors G.G. Matvienko, G. M. Krekov, Krasnoyarsk, Russia, 2004.
[276] O.V. Naumenko, E.R. Polovtseva, Database of the hydrogen sulfide absorption in the 4400-11400 cm-1 region, Atmos. Ocean. Opt. 16 (2003) 900-906.
[277] Y. Ding, O.V. Naumenko, S.-M. Hu, Q. Zhu, E. Bertseva, A. Campargue, The absorption spectrum of H2S between 9540 and 10000 cm-1 by intracavity laser absorption spectroscopy with a vertical external cavity surface emitting laser, J. Molec. Spectrosc. 217 (2003) 222-223.
[278] O.V. Naumenko, A. Campargue, Local mode effects in the absorption spectrum of H2S between 10780 and 11330 cm-1, J. Molec. Spectrosc. 209 (2001) 242-253.

Back to top CH3Br
[279] D. Jacquemart, H. Tran, Temperature dependence of self- and N2-broadening coefficients for CH3Br in the 10-μm spectral region, J. Quant. Spectrosc. Radiat. Transfer. 109 (2008) 569–579.

Back to top HNC
[280] G.C. Mellau, Complete experimental rovibrational eigenenergies of HNC up to 3743cm-1 above the ground state, J. Chem. Phys., 133. (2010) 164303.
[281] G.C. Mellau, Highly excited rovibrational states of HNC, J. Molec. Spectrosc. 269 (2011) 77-85.

Back to top HDO
[282] J. Tennyson, P.F. Bernath, L.R. Brown. A. Campargue, M.R. Carleer, A.G. Császár, et al., IUPAC critical evaluation of the rotational-vibrational spectra of water vapor. Part II. Energy levels and transition wavenumbers for HD16O, HD17O, and HD18O, J. Quant. Spectrosc. Radiat. Transfer 110 (2010) 2160-2184.
[283] N.N. Lavrentieva, B.A. Voronin, O.V. Naumenko, A.D. Bykov, A.A. Fedorova, Line list of HD16O for study of atmosphere of terrestrial planets (Earth, Venus and Mars), Icarus, 236 (2014) 38-47.
[284] A.-W. Liu, O.V. Naumenko, S. Kassi, A. Campargue, CW-Cavity Ring Down Spectroscopy of deuterated water in the 1.58 μm atmospheric transparency window, J. Quant. Spectrosc. Radiat. Transfer 138 (2014) 97-106.
[285] B.A. Voronin, J. Tennyson, R.N. Tolchenov, A.A. Lugovskoy, S.N. Yurchenko, A high accuracy computed line list for the HDO molecule, Mon. Not. Roy. Astr. Soc. 402 (2009) 492-496.
[286] A.-W. Liu, K.-F. Song, H.-Y. Ni, S.-M. Hu, O.V. Naumenko, I.A. Vasilenko, S.N. Mikhailenko, (000) and (010) energy levels of the HD18O and D218O molecules from analysis of their υ2 bands, J. Molec. Spectrosc. 265 (2011) 26-38.
[287] G. Steenbeckeliers, Private communication (July 1971). These data have been reproduced by Lovas at F.J. Lovas, Microwave spectral tables. II. Triatomic molecules, J. Phys. Chem. Ref. Data, 7 (1978) 1445-1750
[288] I.A. Vasilenko, E.R. Polovtseva, O.V. Naumenko, A.P. Scherbakov, A.D. Bykov, A.-W. Liu. K.-F. Song, H.-Y. Ni, S.-M. Hu, Fourier transform absorption spectrum of deuterated water vapor enriched by 18O between 2080 and 4600 cm-1, J. Quant. Spectrosc. Radiat. Transfer, to be submitted (2015).
[289] S.N. Mikhailenko, O.V. Naumenko, A.V. Nikitin, I.A. Vasilenko, A.-W. Liu, K.-F. Song, H.-Y. Ni, S.-M. Hu, Absorption spectrum of deuterated water vapor enriched by 18O between 6000 and 9200 cm-1, J. Quant. Spectrosc. Radiat. Transfer, 113 (2012) 653-669.
[290] H. Partridge, D.W. Schwenke, The determination of an accurate isotope dependent potential energy surface for water from extensive ab initio calculations and experimental data, J. Chem. Phys. 106 (1997) 4618-4639
[291] R.R. Gamache, J-M. Hartmann, An intercomparison of measured pressur x 10-broadening and pressur x 10-shifting parameters of water vapor, Can. J. Chem.; 82 (2004) 1013-1027.
[292] R.R. Gamache, J. Fischer, Half-widths of H216O, H218O, H217O, HD16O, and D216O: I  Comparison between Isotopomers, J. Quant. Spectrosc. Radiat. Transfer 78 (2003) 289-304. 10.1016/S0022-4073(02)00217-0.
[293] R.A. Toth, Smoothened HDO half-width data – Line lists of water vapor parameters for ν2; Files HDOWID.AIR and HDOSHFT.AIR, available from: http://mark4sun.jplnasa.go.v/data/spec/H2O/RAToth_H2O.tar

Back to top SO3
[294] D.S. Underwood, J. Tennyson, S.N. Yurchenko, An ab initio variationally computed room-temperature line list for SO3, Phys. Chem. Chem. Phys. 15(2013) 10118-10125.
[295] V. Meyer, D.H. Sutter, H. Dreizler, The centrifugally-induced pure rotational spectrum and the structure of sulfur-trioxide: a microwave Fourier-transform study of a nonpolar molecule, Z Naturforsch A 46 (1991) 710-714.
[296] A. Kaldor, A.G. Maki, A.J. Dorney, I.M. Mills, Assignment of ν2 and ν4 of SO3, J. Molec. Spectrosc. 45 (1973) 247-252.
[297] J. Ortigoso, R. Escribano, A.G. Maki, The ν2 and ν4 IR bands of SO3, J. Molec. Spectrosc. 138 (1989) 602-613.
[298] A. Maki, T.A. Blake, R.L. Sams, N. Vulpanovici, J. Barber, E.T.H. Chrysostom, et al. High resolution infrared spectra of the ν2, ν3, ν4 and 2ν3 bands of 32S16O3, J. Molec. Spectrosc. 210 (2001) 240-249.
[299] S.W. Sharpe, T.A. Blake, R.L. Sams, A. Maki, T. Masiello, J. Barber, et al., The ν3 and 2ν3 bands of 32S16O3, 32S18O3, 34S16O3 and 34S18O3, J. Molec. Spectrosc. 222 (2003) 142-152.
[300] A. Maki, T.A. Blake, R.L. Sams, J. Frieh, J. Barber, T. Masiello, et al., Analysis of some combination-overtone infrared bands of 32S16O3, J. Molec. Spectrosc. 225 (2004) 109-122.
[301] D.S. Underwood, S.N. Yurchenko, J. Tennyson, P. Jensen, Rotational spectrum of SO3 and a theoretical evidence for the formation of rotational energy level clusters in its vibrational ground state, J. Chem. Phys. 140 (2014) 244316.
[302] D.S. Underwood, S.N. Yurchenko, J. Tennyson, S. Claessen, A. Fateev, ExoMol line lists XVII: The rotation-vibration spectrum of SO3, Mon. Not. Roy. Astron. Soc. (in press).