Intercomparison of MIPAS-IMK product with balloon measurements from the StraPolEte 2009 Kiruna campaign

<u>J. Bureau,</u>C. Camy-Peyret, S.Payan (LPMAA) M. Kiefer, G. Stiller (IMK) F. Jegou, R. Thiéblemont (LPC2E)

Outline

StraPolEte reminderClimatologyIntercomparisons

StraPolEte campaign

Goal of the campaign : to gain a detailed knowledge of the polar

stratosphere in summer

• WP2 Dynamical investigations

Coordinators: N. Huret and F. Lefèvre

• WP3 Stratospheric aerosol characterization

Coordinator: J.-B. Renard

• WP4 Bromine budget investigations

Coordinator: G. Berthet

• WP5 Reference state determination before the settling of the winter polar conditions

Coordinator: S. Payan

StraPolEte : Balloon-borne instruments

Instrument	Measurement technique	Measurements used	Retrieval altitudes provided & vertical resolution
SPIRALE	In situ	O ₃ , CH ₄ , N ₂ O, HCI, CO,	10km-35km
(Partner 1)	Direct Infra-red absorption	HNO ₃ , NO ₂ , OCS	5m
IASI-Balloon (Partner 2)	Remote sensing Infra-red, nadir and limb	CO, CH ₄ , CO ₂ , OCS	Partial columns
LPMA	Remote sensing	O ₃ , HNO ₃ , NO, NO ₂ ,	15km-35km
(Partner 2)	Infra-red solar Occultation	CH ₄ , N ₂ O, HCI	1km
DOAS	Remote sensing	BrO	15km-35km
(Partner 2)	UV Solar occultation		1km
SALOMON-N2	Remote sensing	O ₃ , NO ₂ , BrO, aerosol extinction	15km-35km
(Partner 1)	UV-visible solar pointing		1 km
STAC	In situ aerosol counter	Size distribution of	10km-35km
(Partner 1)		aerosols	10m
MicroRADIBAL (Partner 3)	Remote sensing Scattering and polarization by photopolarimetry	Nature (liquid, solid), size distribution of aerosols	15km-35km 1km

StraPolEete reminder : Satellite instruments

Instrument	Measurement technique	Measurements used	Approximate retrieval altitudes provided & Vertical resolution
GOMOS (ENVISAT satellite)	Stellar occultation UV-visible and near-Infra-red	O ₃ , NO ₂ , aerosol extinction	18km-40km 2-3km
MIPAS (ENVISAT satellite)	Infra-Red atmospheric emission	O ₃ , N ₂ O, ╠H ₄ ,CO , NO ₂ , HNO ₃ , N ₂ O ₅	18km-40km 3km
IASI (MetOp satellite)	Infra-Red Nadir pointing	O ₃ , CO, CH ₄ , N ₂ O, O ₃ Column and partial colu	
MLS (EOS Aura satellite)	Microwaves	H ₂ O, N ₂ O, O ₃ , CO, HNO ₃ , HCI	18km-40km

StraPolEte reminder : Models

MODEL	Туре	Scale	Characteristics	Outputs
FLEXPART (ECMWF)	Trajectories calculations	Global & synoptic	ECMWF fields	Air mass origin
REPROBUS (Partner 4)	Tridimensional chemical transport	Global	Comprehensive chemistry	Chemical species maps and vertical profiles
MIMOSA (ETHER data base)	Tridimensional dynamics	Global & synoptic	High resolution PV advection	Potential vorticity maps
MIMOSA_CHIM (Partner 4)	Tridimensional chemical transport	Global & synoptic	Advection on isentropic surfaces + Comprehensive Chemistry	Tracers (N2O, CH4) maps and vertical profiles

Climatology

- Aim : to determine a reference state of the polar stratosphere
- MIPAS-IMK, MLS measurement, Reprobus output were used to compute zonal statistics of several species : CO,O₃,N₂O,H₂O,HNO₃ and temperature
- Measurement were gathered in (pressure x latitude) boxes, 2° wide, centered on MLS pressure levels
- Statistics were made over summer of 2007,2008 and 2009 (1 month, three monthes of one year, all summer of three years)
- Statistics : mean, stdev, min/max, median, number of points, basic test of « gaussianity »

Climatology : O₃

Pressure (hPa)

Climatology : O₃

Climatology : O₃

Pressure (hPa)

Pressure (hPa)

Intercomparisons

 Measurements made during the campaign by balloon borne instruments, *(in situ* or remote) were compared to satellites measuremts, model outputs

Intercomparisons : O₃

Intercomparisons : O₃

O3 MIPAS-IMK (20090907 - delta t=~4h - dist = 400 km)

Intercomparisons : N₂O

Intercomparisons : N₂O

Intercomparisons : HNO₃

Intercomparisons : H₂O

MIPAS - ELHYSA 2608 22h (400 km and 140km-1 day)

To do

- To go on with the intercomparison of profiles measured during the StraPolEte campaign with satellites measurements, soundings, ...
- To determine if august 2009 was a representative month
- Climatology : to compare the means over differents period of time to get more information about time variability
- To look more carefully at the non-gaussian distributions, which can be caused by several modes.

Thanks

- IMK for providing MIPAS profiles
- M. Kiefer for help with averaging kernels
- F. Jegou for running the Reprobus model
- R. Thiéblemont for helping to generate graphs illustrating the climatology
- C.Camy-Peyret, S.Payan