|
Reference names for file selection using associated search engine are in red [1] Myhre, C.E.L., Christensen D.H., Nicolaisen F.M. and C.J.Nielsen. Spectroscopic Study of Aqueous H2SO4 at Different Temperatures and Compositions: Variations in Dissociation and Optical Properties. J. Phys. Chem., 107, 1979-1991 (2005a). [2] Myhre, C.E.L., Grothe H., Gola A.A., and Nielsen C.J. Optical Constants of HNO3/H2O and H2SO4/HNO 3/H2O at Low Temperatures in the Infrared Region. J. Phys. Chem., 109, 7166-7171 (2005b). [3] Hale G.M. and Querry M.R. Optical constants of water in the 200 nm to 200 µm wavelength region. Appl. Opt., 12, 555-563 (1973). [4] Myhre C.E.L and Nielsen C.J. Optical properties in the UV and visible spectral region of organic acids relevant to tropospheric aerosols. Atmos. Chem. Phys., 4, 1759-1769 (2004). [5] Fenn R.W., Clough S.A., Gallery W.O., Good R.E., Kneizys F.X., Mill J.D., Rothman, L.S. and Shettle E.P. Optical and infrared properties of the atmosphere, Chapter 18. In Handbook of Geophysics and the Space Environment. Edited by A.S. Jursa, Air Force Geophysics Laboratory, Hanscom AFB, MA (1985). [6] Warren S.G. Optical constants of ice from the ultraviolet to the microwave. Appl. Opt., 23, 1206-1225 (1984). [7] Eldridge J.E. and Palik E.D. Sodium Chloride. In Handbook of Optical Constants of Solids. Edited by Palik E.D. Academic Press, Inc., Orlando, FL, 775-793 (1995). [8] Dorsey N.E. Properties of ordinary water-substance in all its phases: water vapor and all the ices. American Chemistry Society. Monograph Series, Reinhold Publishing Corp., New York, NY, 332-338 (1940). [9] Volz F.E. Infrared refractive index of atmospheric aerosol substances. Appl. Optics, 11, 755-759 (1972a). [10] Shettle E.P. and Fenn R.W. Models for the Aerosols of the Lower Atmosphere and the Effects of Humidity Variations on Their Optical Properties. AFGL-TR-79-0214, ADA085951 (20 Sept 1979). [11] Volz F.E. Infrared absorption by atmospheric aerosol substance. J. Geophys. Res., 77, 1017-1031 (1972b). [12] Toon O.B., Pollack J.B. and Khare B.N. The optical constants of several atmospheric aerosols species: ammonium sulfate, aluminum oxide and sodium chloride. J. Geophys. Res., 81, 5733-5748 (1976). [13] Twitty J.T. and Weinman J.A. Radiative properties of carbonaceous aerosols. J. Appl. Meteor., 10, 725-731 (1971). [14] Volz F.E. Infrared optical constants of ammonium sulfate, Sahara dust; volcanic pumice and flyash. Appl. Optics, 12, 564-568 (1973). [15] Hummel J.R. , Shettle E.P. and Longtin D.R. A New Background Stratospheric Aerosol Model for Use in Atmospheric Radiation Models. AFGL-TR-88-0166, Air Force Geophysics Laboratory, Hanscom AFB, MA (August 1988). [16] Norman M.L., Qian J., Miller R.E., Worsnop D.R. Infrared complex indices of supercooled liquid HNO3/H2O aerosols. J. Geophys. Res., 104, 30571-30584 (1999). [17] Gray D.C. American Institute of Physics Handbook, McGraw-Hill, New York, NY, 2nd Edition (1963). [18] Drummond D.G. Absorption coefficients of crystal quartz in the infrared. Proc. Roy. Soc. (London)-Series A, 153, 328-338 (1936). [19] Spitzer W.G. and Kleinman D.A. Infrared lattice bands of quartz. Phys. Rev., 121, 1324-1335 (1961). [20] Philipp H.R. Silicon dioxide (SiO2), type- (crystalline). In Handbook of Optical Constants of Solids. Edited by E. D. Palik. Academic Press, Inc., Orlando, FL, 719-747 (1985). [21] Longtin D.R., Shettle E.P., Hummel J.R. and Pryce J.D. A Wind Dependent Desert Aerosol Model: Radiative Properties. AFGL-TR-88-0112, Air Force Geophysics Laboratory, Hanscom AFB, MA (April 1988). [22] Galuza A.I., Eremenko V.V. and Kirichenko A.P. Analysis of hematite reflection spectrum by the Kramers-Kronig method. Sov. Phys. Solid State, 21, 654-656 (1979). [23] Kerker M., Scheiner P., Cooke D.D. and Kratohvil J.P. Absorption index and color of colloidal hematite. J. Colloid. Interface Sci., 71, 176-187 (1979). [24] Steyer T.R. Infrared optical properties of some solids of possible interest in astronomy and atmospheric physics. Graduate Thesis. Department of Physics, University of Arizona (1974). [25] Onari S., Arai T. and Kudo K. Infrared lattice vibrations and dielectric dispersion in Fe2O3. Phys. Rev. B, 16, 1717-1721 (1977). [26] Duncan T. Crozier A.P.A., Anderson J.R. Brown Carbon Spheres in East Asian Outflow and their Optical Properties. Science, 321, 833-836 (8 August 2008). [27] Chang H. and Charalampopoulis T.T. Determination of the Wavelength Dependence of Refractive Indices of Flame Soot. Proc. R. Soc. London A, 430, 577-591, doi:10.198/rspa.1990.0107 (1990). [28] Grainger R.G., Peters D.M., Thomas G.E., Smith A.J.A., Siddans R., Carboni E. and Dudhia A. Measuring Volcanic Plume and Ash Properties from Space. In: Remote Sensing of Volcanoes and Volcanic Processes: Integrating Observation and Modelling. Edited by Pyle D. and Mather T., vol. 270 of Special Publications, Geological Society (London, 2013). [29] Hasenkopf C., Beaver M., Trainer M., Dewit H., Freedman M., Toon O., McKay C., Tolbert M. Optical properties of Titan and early earth haze laboratory analogs in the mid-visible. Icarus, 207, 903-913 (2010). [30] Magi B.I., Fu Q., and Redemann J. A methodology to retrieve self-consistent aerosol properties using common aircraft measurements. J. Geophys. Res., 112, D24S12, doi:10.1029/2006JD008312 (2007). [31] Niedziela, R.F., Miller R.E. and D. R. Worsnop D.R. Temperature and Frequency-Dependent Optical Constants for Nitric Acid Dihydrate from Aerosol Spectroscopy. J. Phys. Chem. A., 102, 6477-6484 (1998). [32] Querry M.R. Optical Constants of Minerals and Other Materials from the Millimeter to the Ultraviolet. Chemical Research, Development Engineering Center, Aberdeen, CRDEC-CR-88009 (November 1987). [33] Sinyuk A, Torres O. and Dubovik O. Combined use of satellite and surface observations to infer the imaginary part of refractive index of Saharan dust. Geophys. Res. Lett., 30, n° 2, 1081, doi:10.1029/2002GL016189 (2003). [34] Stagg B.J. and Charalampopoulis T.T. Refraction Indices of Pyrolytic Graphite, Amorphous Carbon, and Flame Soot in the Temperature Range 25 to 600 °C. Combustion and Flame, 94, 381-396 (1993). [35] Sutherland R.A. and Khanna R.K. Optical Properties of Organic-based Aerosols Produced by Burning Vegetation. Aerosol Science and Technology, 14, 331-342 (1991). [36] Toon, O.B., Pollack, J.B., Sagan C. Physical Properties of the Particles Composing the Martian Dust Storm of 1971-1972. Icarus, 30, 663-696 (1977) [37] Wagner R., Ajtai T., Kandler K., Lieke K., Linke C., Muller T., Schnaiter M. and Vragel N. Complex refractive indices of Saharan dust samples at visible and near UV wavelengths: a laboratory study. Atmos. Chem. Phys., 12, 2491-2512 (2012). [38] Wagner R., Benz S., Muhler O., Saathoff H., Schnaiter M. and Schurath U. Mid-Infrared Extinction Spectra and Optical Constants of Supercooled Water Droplets. J. Phys. Chem., 109, 7099-7112 (2005). [39] Warren S.G. and Brandt RE. Optical constants of ice from the ultraviolet to the microwave: A revised compilation. J. Geophys. Res., 113, D14220, doi:10.1029/2007JD009744 (2008). [40] Zarzana K.J., De-Hann D.O., Freedman M.A., Hasenkopf C.A. and Tolbert M.A. Optical Propertiers of the Products of alpha-Dicarbonyl and Amine Reactions in Simulated Cloud Droplets. Env. Sci. Tech., 46 , 4845-4851 (2012). [41] Biermann U.M., Luo B.P. and Peter Th. Absorption Spectra and Optical Constants of Binary and Ternary Solutions of H2SO4, HNO3, and H2O in the Mid Infrared at Atmospheric Temperatures. J. Phys. Chem. A, 104, 783-793 (2000). [42] Carlson T.N. and Benjamin S.T.G. Radiative heating rates for saharan dust. J. Atmos. Sc., 37, 193-213 (1980). [43] Clapp M.L., Miller R.E. and Worsnop D.R. Frequency-Dependent Optical Constants of Water Ice Obtained Directly from Aerosol Extinction Spectra. J. Phys. Chem., 99, 6317-6326 (1995). [44] Triaud A.H.M.J. Refractive Indices for Hematite. Private communication http://eodg.atm.ox.ac.uk/ARIA/hematitetriaud_2005_nocol.html (2005). [45] Downing H.D. and Williams D. Optical constants of water in the infrared. J. Geophys. Res., 80, 1656-1661 (1975). [46] Patterson E.M., Gillete D.A. and Stockton B.H. Complex index of refraction between 300 and 700 nm for Saharan aerosol. J. Geophys. Res., 82, 3153-3160 (1977). [47] Egan W.G., Hilgeman T., Pang K. Ultraviolet Complex Refractive index of Martian Dusts: Laboratory Measurements of Terrestrial Analogs. Icarus, 25, 344-355 (1975) [48] Fabian D., Henning Th., Jäger C., Mutschke H., Dorschner J., Werhan O. Steps toward interstellar silicate mineralogy VI. Dependence of crystalline olivine IR spectra on iron content and particle shape. Astron. Astrophys., 378, 228 (2001). [49] Ramirez S.I., Coll P., da Silva A., Navarro-Gonzalez R., Lafait J., Raulin F. Complex refractive index of Titan’s aerosol analogues in the 200–900 nm domain. Icarus, 156, 515-529 (2002). [50] Peterson J.T. and Weinman J.A. Optical properties of Quartz dust particles at Infrared Wavelengths. J. Geophys. Res., 74, 6947-6952, Dec. 20 (1969). [51] Henning Th., Begemann B., Mutschke H. and Dorschner J. Optical properties of oxide dust grains. Astron. Astrophys. Suppl. Ser., 112, 143-149 (1995). [52] Pollack J.B., Toon O.B. and Khare B.N. Optical constants of some terrestrial rocks and glasses. Icarus, 19, 372-389 (1973). [53] Tran B.N., Joseph J.C., Ferris J.P., Persans P.D., Chera J.J. Simulation of Titan haze formation using a photochemical flow reactor – The optical constants of the polymer. Icarus, 165, 379–390 (2003). [54] Kou L., Labrie D. and Chylek P. Refractive indices of water and ice in the 0.65 to 2.5 micron range. Appl. Opt., 32, 3531-3540 (1993). [55] Fouquart Y., Bonnel B., Brogniez G., Buriez J.C., Smith L., Morcrette J.J. Observations of Sahara aerosols: Results of ECLATS field experiment. Part II: Broadband radiative characteristics of the aerosols and vertical radiative flux divergence. J. Climate Appl. Meteor., 26, 38-52 (1987). [56] Niedziela R.F., Norman M.L., de Forest C.L., R.E. Miller R.E. and Worsnop D.R. A Temperature and Composition-Dependent Study of H2 SO4 Aerosol Optical Constants Using Fourier Transform and Tunable Diode Laser Infrared Spectroscopy. J. Phys. Chem. A , 103, 8030-8040 (1999). [57] Norman M.L., Miller R.E., and Worsnop D.R. Ternary H2SO 4/HNO3/H2O Optical Constants: New Measurements from Aerosol Spectroscopy under Stratospheric Conditions. J. Phys. Chem. A, 106, 6075-6083 (2002). [58] Vuitton V., Tran B.N., Persans P.D., Ferris J.P. Determination of the complex refractive indices of Titan haze analogs using photothermal deflection spectroscopy. Icarus, 203, 663-671 (2009). [59] Palmer K.F. and Williams D. Optical constants of sulfuric acid: Application to the clouds of Venus. Appl. Opt., 14, 208-219 (1975). [60] Newman S.M., Clarisse L., Hurtmans D., Marenco F., Johnson B., Turnbull K, Havemann S., Baran A.J., O’Sullivan D. and Haywood J. A case study of observations of volcanic ash from the Eyjafjallajökull eruption: 2. Airborne and satellite radiative measurements. J. Geophys. Res., 117, D00U13, doi:10.1029/2011JD016780 (2012). [61] Querry M.R. and Tyler I.L. Reflectance and complex refractive indices in the infrared of aqueous solutions of nitric acid. J. Chem. Phys., 72, 2495-2499 (1980). [62] Ray P.S. Broadband complex refractive indices of ice and water. Appl. Opt., 11, 1836-1844 (1972). [63] Remsberg E.E., Lavery D. and Crawford B. Optical constants for sulfuric and nitric acids, J. Chem. and Engin. Data, 19, 263-255 (1974). [64] Richwine L.J., Clapp M.L., Miller R.E. and Worsnop D.R. Complex refractive indices in the infrared of nitric acid trihydrate aerosols. Geophys. Res. Lett., 22, 2625-2628 (1995). [65] Dinar E., Riziq A.A., Spindler C., Erlick C., Kiss G., Rudich Y. The complex refractive index of atmospheric and model humic-like substances (HULIS) retrieved by a cavity ring down aerosol spectrometer (CRD-AS). Faraday Discuss., 137, 279-295; discussion 297-318 (2008). [66] Koepke P., Hess M., Schult I. and Shettle E.P. Global Aerosol Data Set, Report No. 243. Max-Planck-Institut für Meteorologie, Hamburg, ISSN 0937-1060 (1997); Hess H., Koepke P., Schult I. Optical properties of aerosols and clouds: the software package OPAC, Bull. Am. Meteorol. Soc., 79, 831–844 (1998). [67] Sokolik I.N., Andronova A. and Johnson T.C. Complex refractive index of atmospheric dust aerosols. Atmos. Env., 27A, 2495-2502 (1993). [68] Sokolik I.N., Toon O.B. and Bergstrom R.W. Modeling the radiative characteristics of airborne mineral aerosol at infrared wavelengths. J. Geophys. Res., 103, 8813-8826 (1998). [69] Hoffer A., Gelencser A., Guyon P., Kiss G., Schmid O., Frank G.P., Artaxo P. and Andreae M.O. Optical properties of humic-like substances (HULIS) in biomass-burning aerosols. Atmos. Chem. Phys., 6 , 3563–3570 (2006). [70] Tisdale R.T., Glandorf D.L., Tolbert M.A. and Toon O.B. Infrared optical constants of low temperature H2SO4 solutions representative of stratospheric sulfate aerosols. J. Geophys. Res., 103, 25353-25370 (1998). [71] Curtis D.B., Rajaram B., Toon O.B. and Tolbert M.A. Measurement of the temperature-dependent optical constants of water ice in the 15-200 micron range. Appl. Opt., 44, 4102-4118 (2005). [72] Toon O.B., Tolbert M.A., Koehler B.C., Middlebrook A.M. and Jordan J. The infrared optical constants of H2O-ice, amorphous nitric acid solutions, and nitric acid hydrates. J. Geophys. Res., 99, 25631-25654 (1994) [73] Patterson E.M. Measurement of the imaginary refractive index between 300 and 700nm of Mount St. Helens ash. Science, 211, 836-838 (1981). [74] Patterson E.M. Optical absorption coefficients of soil aerosol particles and volcanic ash between 1 and 16 μm. In the 2nd Conference on Atmospheric Radiation. American Meteorological Society, 177-180 (1975). [75] Patterson E.M. and Pollard C.O. Optical properties of the ash from El Chichón volcano. Geophysical Research Letters, 10, 4, 317-320 (April 1983). [76] Peters D.M., Grainger R.G., Thomas G. Aerosol optical properties, Sub-Department of Atmospheric Oceanic and Planetary Physics. University of Oxford, UK, Aerosol optical properties (2009). http://eodg.atm.ox.ac.uk/ARIA/sandpeters_2009.html [77] Balkanski Y., Schulz M., Claquin T. and Guibert S. Reevaluation of Mineral aerosol radiative forcings suggests a better agreement with satellite and AERONET data. Atmos. Chem. Phys., 7, 81-95 (2007). |